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Abstract 
Starting from the infrared limit of Yang-Mills theory, we introduce here a Higgs-free model in 

which symmetry breaking arises from critical behavior near dimension four.  Electroweak 

bosons develop mass near the Wilson-Fisher point of Renormalization Group flow. The 

family structure of Standard Model is recovered using the technique of “epsilon expansion”. 

We also find that dimensional regularization offers a straightforward solution to the 

cosmological constant problem. 
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Model. 
 

1. Introduction 

The Standard Model of particle physics (SM) is a highly successful theory that has been in 

place for more than 35 years. It includes the (3) (2) (1)SU SU U  gauge model of strong 

and electroweak interactions along with the Higgs mechanism that spontaneously breaks the 

electroweak (2) (1)SU U  group down to the (1)U  group of electromagnetism. Despite its 

outstanding reliability, SM is viewed as a low-energy framework that is likely to be amended 

by new phenomena occurring in the Terascale region. The elementary Higgs boson picture of 

electroweak (EW) and flavor symmetry breaking suffers from several drawbacks. In 

particular [1, 2]: 

 It does not provide a dynamical explanation for electroweak symmetry breaking 

(EWSB). 

 It appears to be highly contrived, requiring fine tuning of parameters to enormous 

precision. 

 It has a hierarchy problem of widely different energy scales. 

 It provides no insight into flavor physics. 

 It is at odds with the measured value of the cosmological constant. 

Similar or different drawbacks persist in supersymmetric extensions of Higgs theories 

(MSSM) and alternative models of EWSB such as Technicolor [3, 4]. 
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2. Challenges of Yang-Mills theory 

In our view, there is a couple of key roadblocks that have slowed down progress on the 

theoretical side of high-energy physics for the past 35 years:  

 Because Yang-Mills field is self-interacting, it is inherently nonlinear and prone to 

undergo complex behavior [5].  

 Dynamics of Yang-Mills field is strongly coupled in the infrared (IR) where 

perturbation theory breaks down and traditional methods of quantum field theory 

(QFT) fail to apply. 

 

3. New tools: nonlinear dynamics and critical behavior  

To deal with these challenges, we start from a far less explored vantage point. Specifically, 

we exploit the fact that both mapping theorem [6] and the Landau-Ginzburg-Wilson (LGW) 

model of critical behavior [7, 19] enable understanding of the IR regime of gauge field theory 

using the principles of Renormalization Group program (RG). 

 The mapping theorem 

The electroweak group (2) (1)SU U  is broken at a scale approximately given by 

1
2( )EW FO G


 , in which FG  is the Fermi constant. Yang-Mills fields associated with (2)SU  

are vectors denoted as ( )aA x , in which 0,1,2,3   is the Lorentz index and 1,2,3a   is the 

group index. To manage the large number of equations derived from the Yang-Mills theory, it 

is desirable to devise a method whereby ( )aA x  are reduced to analog fields having less 

complex structure. The mapping theorem allows for such a reduction. The action functional of 

classical scalar field theory in four-dimensional space-time is defined as 

                                             4 2 2 41 1
[ ] [ ( ) ]

2 4!
S d x g                                              (1)       

An extremum of (1) is also an extremum of the (2)SU Yang-Mills action provided that: 

a) g  represents the coupling constant of the Yang-Mills field, 

b) some components of ( )aA x  are chosen to vanish and others to equal each other.  

In the most general case, the following approximate mapping between Yang-Mills fields and 

scalar ( )x  holds [6]: 

                                                    
1

( ) ( ) ( )
2

a aA x x O
g

                                               (2)        
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where 
a

  are properly chosen constants. The mapping becomes exact in the Lorenz gauge 

( ) 0aA x

   and in the IR regime of strong coupling ( g  ). 

 LGW theory near dimension four: a brief overview 

Consider the Euclidean space LGW action in D dimensional space-time [7, 8, 19] 

                                                  21
[ ] [ ( ) ( )]

2

DS d x V                                             (3)         

In particular, 

                                                 
2

2 4( )
2 4!

r g
V j                                                     (4)      

in which j  denotes the external current coupled to   and r  stands for the deviation from the 

critical temperature ( cr T T  ). According to the RG program, rescaling the cutoff 

' , 1b
b


    and integrating out fast modes within ' k    , turns the original 

action into an effective action. The effective theory built with this prescription represents a 

lower-energy image of the original theory, namely 

                                                    [ ], [ ], 'effS S                                                      (5)      

Here, ( )x  are the slow modes of the field ( 'k   ),  

                                            
'

( ) ( )exp( )
(2 )

D

Dk

d k
x k ikx





                                           (6)      

and 

                                          [ ]exp( [ ]) exp( [ ])effD S S                                           (7)                                             

with 

                                          21
[ ] [ ( ) ( )]

2

D

eff effS d x V                                            (8)       

Invoking the limit of infinitesimal scaling 1b dt  , dt <<1 along with the local potential 

approximation leads to [7, 8, 19],  

                                 
2

2

2

[ ]
[ ] [ ] log[ ]

2

D

eff

Q V
S S d x 

 



 
     

                                (9)       

where 

                                                       
22

(2 ) ( )
2

D
D

D

dt
Q

D









                                                   (10)       
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When applied to (4), the logarithmic correction on the right hand side of (9) may be expanded 

as  

                            
2 2 4

2 4

2
log[1 ] log[1 ] ...

2(1 ) 8(1 )

V g g
r

r r
 




       
  

                      (11)        

in which   has been normalized to unity ( 1  ). On account of (11), sufficiently small 

deviations from criticality ( r <<1) produce the following approximations  

                                         [ ]effS  ~ [ ]S  ,        [ ]effV   ~ [ ]V                                    (12) 

 

4. Assumptions  

4.1) As previously stated, the mapping theorem applies when comparing Yang-Mills fields 

with classical scalar fields. We extend this ansatz and assume that the theorem holds 

sufficiently well for quantum scalar field theory. This assumption may be motivated by 

considering the close analogy between quantum field theory (QFT) and statistical systems 

near criticality [9]. On this basis, we assume that the Yang-Mills model is reasonably well 

approximated by the LGW theory of equilibrium critical behavior. 

4.2) From (4.1) it follows that the dimensional parameter of LGW theory and dimensional 

regulator of Yang-Mills theory 4 D    are identical entities. This identity is made explicit 

in the first row of Tab. 1 below. 

4.3) We analyze on the IR regime of Yang-Mills theory in which EW  stands for the EW 

scale,   for the running scale and the ultraviolet (UV) scale UV EW       for the 

cutoff. The dimensional parameter is then given by [10, 13],  

                                                         
2

2

1
0

log( )UV





 


                                                   (13)        

Moreover, to simplify the derivation, it is convenient to take advantage of the large numerical 

disparity between the two scales entering the logarithm and substitute (13) with  

                                                                 ~
2

2

UV




                                                           (14)                                                                

It is seen from (14) that, 

 maximal deviation from 4D   occurs near the limit  UV   . This finding is 

consistent with quantum gravity theories asserting that space-time turns 2+1 

dimensional at ultra-high energies [11]. 
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 minimal deviation from 4D   ( 0  ) occurs as   approaches the  EW scale, that 

is, when EW  .   

4.4) The UV cutoff is not uniquely determined but smeared out by high-energy noise [12]. 

The UV cutoff spans a range of values  

                                                             UV UV                                                           (15)       

(15) implies that, at any given   and UV , dimensional parameter   falls in the range 

                                                          2 UV

UV


 





                                                      (16)       

 

5. Dynamics of RG flow equations 

Elaborating from these premises leads to the following side-by-side comparison between 

parameters of LGW and Yang-Mills theories: 

Landau –Ginzburg -Wilson theory Yang-Mills theory 

Dimensional parameter ( 4 D   ) Dimensional regulator ( 4 D   ) 

Momentum cutoff ( ) Ultraviolet cutoff  ( UV ) 

Temperature (T ) Energy scale ( EW UV    ) 

Critical temperature ( cT ) EW scale ( EW ) 

Temperature parameter ( r ) 
Deviation from the EW scale 

( EW    ) 

Coupling parameter ( u ) Coupling constant ( 2g ) 

External field ( h ) Fermion current ( j ) 

Tab. 1: Comparison between LGW and Yang-Mills theories 

Under these circumstances, RG flow equations for r  , 2u g  and fermion current 

fj j  read, respectively [13] 

 2 2( )
( )(2 )bg ag

t





  


      

                                                      
2

2 2 23 ( )
g

g b g
t




 


                                                 (17)       
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(3 )
2

f

f

j
j

t


 


 

Here, 

                                     2

43 UVa K  ,      43b K ,      2 1

4 (8 )K                                   (18)       

On account of (12), the Wilson-Fisher (WF) fixed point of (17) is defined by the pair 

                                              ( )* ,
6

a

b
         2( )*

3
g

b


                                           (19)      

(19) acts as a non-trivial attractor of the RG flow. Because it resides on the critical 

line EW  , it describes by definition a massless field theory ( 0r   ) [19]. The non-

vanishing vacuum of   at the WF point results from minimization of (4), that is,  

                                            
1

2
42

6(- )
v = 3( )

( )
UVK

g

 



                                             (20)       

(19) and (20) show how massive gauge bosons develop at the WF point from critical behavior 

near 4D  . Let v =M denote the mass acquired by the gauge boson. Combining (14), (18), 

(19) and (20) yields   

2 * 2( )g M ~ 2

EW const   

                                                                                                                                         (21)                                                                                                                      

* 2( )g ~ fm ~  

in which 
* ( )f fm O j  stands for the normalized fermion mass [13]. On account of 

assumptions 4.3), 4.4) and (21), the WF attractor (20) changes from a single isolated point to 

a distribution of points.  Our next step is to explore the link between the structure of the WF 

attractor and the parameters of SM. 

 

6. Wilson-Fisher point as source of particle masses and gauge charges 

We are now ready to analyze the dynamics of (17) using the standard methods employed in 

the study of nonlinear systems [14]. To this end, we first note that the last equation in (17) is 

uncoupled to the first two. This enables us to reduce (17) to a planar system of differential 

equations. We next cast (17) in the form of a two-dimensional map, namely 

                                  2 2 2

1( ) (1 )( ) 3 ( )n n ng t g b t g                                                  (22a)  

                                 2 2

1( ) ( ) [1 2 ( ) ] ( )n n n nt b t g a t g                                     (22b)                                                         
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where t  represents the increment of the sliding scale. Linearizing (22) and computing its 

Jacobian J gives 

                                                       1 (2 ) 1J t                                                      (23)                                     

Thus map (23) is dissipative for 0   and asymptotically conservative in the limit 

0t    . Invoking universality arguments [14, 18] we conclude that, near criticality, (22) 

shares the same universality class with the quadratic map. Furthermore, in the neighborhood 

of Feigenbaum’s attractor,   approaches 0   according to:  

                                                       
n

n na  


                                                         (24)  

Here, 1n   is the index counting the number of cycles generated through the period 

doubling cascade,   is the rate of convergence (in general, different from Feigenbaum’s 

constant for the quadratic map) and na  is a coefficient which becomes asymptotically 

independent of n , that is, a a   [15]. Substituting (24) in (21) yields 

                             2 2( ) ( ) ( )
n

j n n f nP n M g m 


         if   1n                               (25) 

in which 1,2,3j   indexes the three entries of (25). Period-doubling cycles are characterized 

by 2pn  , with 1p  . The ratio of two consecutive terms in (25) is then given by 

                                                  
( 2 )( 1)

[ ]
( )

p
j

j

P p
O

P p



                                                     (26) 

Numerical results derived from (26) are displayed in Tab. 3. This table contains a side-by-side 

comparison of estimated versus actual mass ratios for charged leptons and quarks and a 

similar comparison of coupling strength ratios. Tab. 2 contains the set of known quark and 

gauge boson masses as well as the SM coupling strengths. All quark masses are reported at 

the energy scale given by the top quark mass and are averaged using reports issued by the 

Particle Data Group [16]. Gauge boson masses are evaluated at the EW scale and the coupling 

strengths at the scale set by the mass of the Z  boson. The best-fit rate of convergence is 

3.9   which falls close to the numerical value of the Feigenbaum constant corresponding to 

hydrodynamic flows [13, 15, 17].  

(21) and (25) imply that there is a series of terms containing massive electroweak bosons, 

namely  

                    
2 2 2

1 1( ) ( ) .... ( ) ... .n n n n n q n qM g M g M g const  

                                     (27)                                                   

For the first two terms of this series we obtain 
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2 2 2

2

2 2

2 2

1Z EM

W

M g e

M g






                                                 (28) 

in which 
2

4EM
e


  is the electromagnetic coupling strength and 

2

2
2 4

g



  the strength 

of the weak interaction. The rationale for (28) lies in the fact that the charged gauge boson 

W   carries a superposition of weak and electromagnetic charges, whereas the neutral gauge 

boson 0Z  carries only the weak isospin charge. Inverting (28) and taking into account the last 

rows of Table 3, leads to 

                               

2
2

2

2

1 1 1
1 cos

1
1 1

W
W

EMZ

M

M


 
 

    

 

                                         (29)   

(29) suggests a natural explanation for the Weinberg angle W . Likewise, we may write (27) 

as 

                                                 

2 2 2

2 2

2 2

W Z

g g e
const

M M


                                                   (30a) 

This relation offers a straightforward interpretation for both Fermi constant and the mass of 

the hypothetical Higgs boson. Indeed, in SM we have [13] 

                                                         
2

2

2
4 2 F

W

g
G

M
                                                       (30b) 

and 

                                             0 1
v ( ) 246.22

2F

GeV
G

                                         (30c)         

where 0v( )  denotes the vacuum expectation value for the neutral component of the “would-

be” Higgs doublet.  

Parameter Value Units 

um  2.12 MeV 

dm  4.22 MeV 

sm  80.90 MeV 

cm  630 MeV 

bm  2847 MeV 
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tm  170,800 MeV 

W
M   80.46 GeV 

0Z
M  91.19 GeV 

EM  1/128 - 

W  0.0338 - 

QCD  0.123 - 

                                      

Tab. 2: Actual values of selected SM parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab 3: Actual versus predicted ratios of SM parameters 

Parameter 

ratio 
Behavior Actual Predicted 

u

c

m
m

 

 

4

  
33.365 10  34.323 10  

c

t

m
m

 4

  
33.689 10  34.323 10  

d

s

m
m

 2

  0.052  0.066 

s

b

m
m

 2

  0.028  0.066 

em
m

 4

  
34.745 10  34.323 10  

m
m





 2

  0.061  0.066 

W

Z

M
M

 

1
2

1
(1 )

  
0.8823 0.8623 

2EM

W

( )



 2

  0.053  0.066 

2EM

s

( )



 4

  
34.034 10  34.323 10  
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7. A natural solution for the hierarchy problem 

It is known that the technique of renormalization in perturbative QFT is conceived as a two 

step program: regularization and subtraction. One first controls the divergence present in 

momentum integrals by inserting a suitable “regulator”, and then brings in a set of “counter-

terms” to cancel out the divergence.  Momentum integrals in QFT have the generic form 

                                                           
4

0
( )I d qF q



                                                       (31)        

Two regularization techniques are frequently employed to manage (31), namely “momentum 

cutoff” and “dimensional regularization”. When the momentum cutoff scheme is applied for 

regularization in the UV region, the upper limit of (31) is replaced by a finite cutoff  , 

                                                   
4

0
( )I I d qF q



                                                     (32)      

Explicit calculation of the convergent integral (32) amounts to a sum of three polynomial 

terms  

                                                 1( ) ( )I A B C    


                                                  (33)  

Dimensional regularization proceeds instead by shifting the momentum integral (33) from a 

four-dimensional space to a continuous D - dimensional space 

                                                    
0

( )D

DI I d qF q


                                                     (34) 

Introducing the dimensional parameter 4 D    leads to 

                                            1'( ) ' '( )DI I A B C 


                                                (35)     

In general,   and   are not independent regulators and relate to each other via the 

approximate connection (13) 

                                                    
2

2

0

1
4

log( )
D



  


                                               (36)                                                                                                                          

where 0    stands for an arbitrary but non-vanishing reference scale.  

A similar technique can be used to regularize field theory in the IR limit whereby   is taken 

to represent the lowest bound scale. A strictly positive   on less than four dimensions 

( 4D  ) requires taking the reciprocal of the logarithm in (36) to comply with 0   . The 

infrared version of (36) accordingly reads: 



Prespacetime Journal| April 2011 | Vol. 2 | Issue 4 | pp. 523-534 

Goldfain, E.  Higgs-Free Symmetry Breaking from Critical Behavior near Dimension Four 

 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 
www.prespacetime.com 

 

533 

                                                   
2

0
2

1
' 4

log( )

D


  



                                               (37)                                                                                   

We next proceed with the following assumptions 

7.1) The deep IR cutoff of field theory is set by the cosmological constant scale  

                                                            
1

4( )cc                                                            (38)      

where cc  represents the cosmological constant. 

7.2) The deep UV cutoff of field theory is set by the Planck scale:    

                                                            UV Pl                                                               (39)                                                            

Combining 7.1) and 7.2) implies that, as the EW scale is approached from above or below, 

(36) and (37) naturally converge to a common value. Taking 0 EW   and substituting in 

(36) and (37) yields 

                                         

2
1

4( )EW Pl EW
cc

EW Pl

 




   

 
                                               (40)                                           

Several conclusions may be drawn from (40),       

a) Asymptotic approach to four-dimensional space-time explains the existence of the deep IR 

cutoff ( cc ) and deep UV cutoff ( Pl ). Stated differently, fractal space-time description 

supplied by the condition 0   and ' 0   appears to be linked to these natural bounds [20].   

b) Fixing two out of the three scales involved in (40) automatically determines the third one.  

c) The gauge hierarchy problem, cosmological constant problem and the existence of the EW 

phase transition appear to be deeply interconnected. 

d) The derivation presented here stands in sharp contrast with sophisticated approaches to the 

hierarchy problem based on supersymmetry, Technicolor, extra-dimensions, anthropic 

arguments, fine-tuning or gauge unification near the Planck scale.  

 

Online References 

[1] http://www.phys.uu.nl/~prokopec/MaciejKochJanusz_higgs2.pdf 

[2] http://onlinelibrary.wiley.com/doi/10.1002/prop.201000063/abstract 

[3] http://conferences.fnal.gov/aspen05/talks/gunion.pdf 

[4]http://www.deepdyve.com/lp/hindawi-publishing-corporation/lectures-on-walking-technicolor-

holography-and-gauge-gravity-dualities-QqBof0qAX4 

[5] http://arxiv.org/abs/hep-th/0612102 

http://www.phys.uu.nl/~prokopec/MaciejKochJanusz_higgs2.pdf
http://onlinelibrary.wiley.com/doi/10.1002/prop.201000063/abstract
http://conferences.fnal.gov/aspen05/talks/gunion.pdf
http://www.deepdyve.com/lp/hindawi-publishing-corporation/lectures-on-walking-technicolor-holography-and-gauge-gravity-dualities-QqBof0qAX4
http://www.deepdyve.com/lp/hindawi-publishing-corporation/lectures-on-walking-technicolor-holography-and-gauge-gravity-dualities-QqBof0qAX4
http://arxiv.org/abs/hep-th/0612102


Prespacetime Journal| April 2011 | Vol. 2 | Issue 4 | pp. 523-534 

Goldfain, E.  Higgs-Free Symmetry Breaking from Critical Behavior near Dimension Four 

 

 
ISSN: 2153-8301  Prespacetime Journal 

Published by  QuantumDream, Inc. 
www.prespacetime.com 

 

534 

[6] http://arxiv.org/PS_cache/arxiv/pdf/1011/1011.3643v3.pdf 

[7] http://terpconnect.umd.edu/~kwyho/scholarlyarticles/stehky_phase.pd 

[8] http://www.phys.vt.edu/~tauber/schladming11a.pdf 

[9] http://arxiv.org/PS_cache/hep-ph/pdf/0005/0005122v1.pdf 

[10] http://www.lorentz.leidenuniv.nl/~vanbaal/FT/extract.pdf 

[11] http://prl.aps.org/abstract/PRL/v106/i10/e101101 

[12] http://dx.doi.org/10.1016/S0167-2789(97)00286-8 

[13] http://www.worldacademicunion.com/journal/1749-3889-3897IJNS/IJNSVol3No3Paper02.pdf 

[14]http://books.google.com/books?hl=en&lr=&id=FIYHiBLWCJMC&oi=fnd&pg=PP11&dq=nonlin

ear+dynamics,+chaos 

[15]http://www.ecampus.com/introduction-renormalization-group-methods/bk/9780471600138 

[16] http://pdg.lbl.gov/2010/listings/contents_listings.html 

[17] http://www.worldscinet.com/ijbc/18/1803/S0218127408020756.html 

[18] http://www.cns.gatech.edu/PHYS-4267/UFO.pdf 

[19] http://ipht.cea.fr/Docspht//articles/t06/149/public/notes-jijel06-publi-final.pdf 

[20] http://www.prespacetime.com/index.php/pst/article/viewFile/164/179 

 

http://arxiv.org/PS_cache/arxiv/pdf/1011/1011.3643v3.pdf
http://terpconnect.umd.edu/~kwyho/scholarlyarticles/stehky_phase.pd
http://www.phys.vt.edu/~tauber/schladming11a.pdf
http://arxiv.org/PS_cache/hep-ph/pdf/0005/0005122v1.pdf
http://www.lorentz.leidenuniv.nl/~vanbaal/FT/extract.pdf
http://prl.aps.org/abstract/PRL/v106/i10/e101101
http://dx.doi.org/10.1016/S0167-2789(97)00286-8
http://www.worldacademicunion.com/journal/1749-3889-3897IJNS/IJNSVol3No3Paper02.pdf
http://books.google.com/books?hl=en&lr=&id=FIYHiBLWCJMC&oi=fnd&pg=PP11&dq=nonlinear+dynamics,+chaos
http://books.google.com/books?hl=en&lr=&id=FIYHiBLWCJMC&oi=fnd&pg=PP11&dq=nonlinear+dynamics,+chaos
http://www.ecampus.com/introduction-renormalization-group-methods/bk/9780471600138
http://pdg.lbl.gov/2010/listings/contents_listings.html
http://www.worldscinet.com/ijbc/18/1803/S0218127408020756.html
http://www.cns.gatech.edu/PHYS-4267/UFO.pdf
http://ipht.cea.fr/Docspht/articles/t06/149/public/notes-jijel06-publi-final.pdf
http://www.prespacetime.com/index.php/pst/article/viewFile/164/179

